Session Speakers

- Justin Doornink, Ph.D. Student
- Travis Konda, Ph.D. Student
- Van Robbins, M.S. Student
- J. S. Ingersoll, WHKS & Co.
- Terry Wipf, ISU
- F. Wayne Klaiber, ISU
- Brent Phares, CTRE
- Scott Neubauer, Iowa DOT
Use of Railroad Flatcars in Cost Effective Low-Volume Road Bridges

J. D. Doornink, T. J. Wipf and F. W. Klaiber

Bridge Engineering Center
Iowa State University
Topics of Interest

- Why flatcar bridges?
- Railroad flatcar (RRFC) selection
- RRFC Demonstration Bridges
 - Construction
 - Field Testing
 - Analysis
 - Economy
Problem: Insufficient funds to address bridge needs on Iowa’s secondary roads

Solution: Use viable, economical, low cost alternatives for low-volume road bridges
Potential Solution: RRFC Bridges

Attractive Characteristics:

- Quick to install
- Can be used on new or existing abutments
- Available in variable lengths
- Can be constructed by county work force
- Low cost
Objectives of Research:

- Develop a process for selecting structurally adequate flatcars
- Develop design and construction guidelines for RRFC bridges
- Design, construct, and test two demonstration bridges
 - Buchanan County Bridge (BCB)
 - Winnebago County Bridge (WCB)
Selection Criteria:

- Size of Longitudinal and Transverse Members, Support Locations, and Load Transferring Capabilities
- Member Straightness/Damage
- Structural Element Connections
- Uniform, Matching Cambers
- Availability
Original Buchanan County Bridge
RRFC Selected for the BCB

*Length = 56 ft.
Original Winnebago County Bridge
RRFC Selected for the WCB

*Length = 89 ft
Construction Process

- Phase 1: Substructure Construction and Flatcar Placement
- Phase 2: Development of Longitudinal Connections between Flatcars
- Phase 3: Installation of Driving Surface and Guardrail
Buchanan County Bridge

- 29 ft wide; 56 ft long
 (Original BCB = 16 ft wide; 39 ft long)

- Substructure material: Steel H-piles with R/C cap

- Means of Transverse Load Distribution
 - Reinforced concrete beams for longitudinal flatcar connection
BCB Phase 3
Completed BCB
Winnebago County Bridge

- 26.75 ft wide; 89 ft long
 (Original WCB: 20.7 ft wide; 56 ft long)

- Substructure material: Steel H-piles with steel cap

- Means of Transverse Load Distribution
 - Small R/C beams between RRFCs plus transverse timber planks
WCB Layout

Timber Planks

26' – 9 1/2"

66' – 0"

10' – 0"

10' – 0"
WCB Phase 1
WCB Phase 2
Completed WCB
Field Testing of the RRFC Bridges

- Instrumented for measuring strains and deflections at critical locations

- Tandem Iowa legal load ≈ 50,000 lb gross
 - Load Test 1: Single RRFC
 - Load Test 2: Finished Bridge
 - Load Test 3: One year later
BCB Field Tests
WCB Field Tests
RRFC Bridge Analytical Results

- Grillage models generated for each bridge and subjected to tandem truck loads for each test

- Upper and lower analytical bounds established

- Good agreement between analytical and experimental results
BCB: Analytical and Experimental Results
Performance of Demonstration Bridges

- Maximum Stresses (DL + LL):
 - BCB = 12.7 ksi
 - WCB = 16.7 ksi
 - f_y = 40 ksi

- Maximum Live Load Deflections:
 - BCB = 0.38 in. (allowable = 0.84 in.)
 - WCB = 0.63 in. (allowable = 0.99 in.)
Approximate Costs of RRFC Bridges

- BCB = $20/ft²
- WCB = $26/ft²
- Conventional Iowa Slab Bridge ≈ $65/ft²
Conclusions

- RRFC bridges are a viable, economic alternative for LVR bridges

- Design recommendations (which include the live load distribution of the two longitudinal connections employed) were developed

- Both longitudinal connections were determined to be structurally adequate

- RRFC bridges can be completely constructed by county personnel